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Background on Image Registration

Image registration is the process of aligning two or more images of
approximately the same scene, possibly captured with different sensors
or at different times.
The registration of multimodal images is a particular challenge; a variety
of approaches to the multimodal registration problem have been
proposed.
Some are based on SIFT and related features, while others attempt to
efficiently represent the images to be registered in a common feature
space.
For images with very different information content, there is often very little
local similarity between the two images. This renders local feature
descriptors ineffective for image registration, though robust outlier
detection can compensate to some extent.
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Wavelets and their Limitations

Methods that construct global features have been proposed for image
registration.
In particular, using wavelets to isolate important features in images has
been successful for automatic image registration.
However, wavelets are isotropic, meaning that they do not emphasize
directional features. Indeed, it has been mathematically known for over
ten years that wavelets are theoretically suboptimal for a large class of
images with edges, i.e. cartoon-like images.
This suggests looking to alternative representation systems for extracting
features.
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Anisotropic Systems: Shearlets

Several directionally sensitive systems have been proposed, beginning in
the late 1990’s, to address the theoretical suboptimality of wavelets.
Among these are ridgelets (Donoho and Candés), curvelets (Donoho et
al), contourlets (Do and Vetterli), and shearlets (Labate, Kutyniok, Weiss,
et al).
Curvelets and shearlets are provably near-optimal for representation
certain images with edges, and both are numerically implemented in
stable packages.
However, shearlets have the advantage of not needing to interpolate
rotations, because shearlets implement directionality via shearing, not
rotations.
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Use of Shearlets

In recent work, we proposed to incorporate shearlets in an automatic
wavelet registration algorithm, with the hope of utilizing the theoretical
properties of shearlets for edges.
We did so by computing shearlet features for each image pair, then
aligning these features via least squares optimization. This registration
output was then used as an initial guess for another call to the
registration algorithm, this time using wavelet features.

Figure: A 256 × 256 grayscale optical image of a mixed land-cover area in
Washington state containing both textural and edge-like features.
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Wavelets versus Shearlets

To illustrate the directional character of discrete shearlet algorithms, and its
utility for image registration, consider the features produced by a MATLAB
discrete wavelet algorithm using the ‘db2’ wavelet, and the shearlet feature
algorithm we have developed.

Figure: Wavelet (left) and shearlet (right) features extracted from optical image,
emphasizing textural and edge features, respectively.
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Towards a More Agile Algorithm

The order of the shearlets and wavelets was simply because shearlets
seemed to have a larger radius of convergence with respect to the initial
registration guess, but suffered from lower accuracy in some cases.
Registering shearlets first provides a good first approximation, which is
refined by registering with wavelets second.
However, we were interested in a more flexible ordering and integration of
the shearlets and wavelets.
By utilizing isotropic wavelets to further decompose the shearlet features,
we hoped to further capture the most significant features in the image.
We presently consider only decompositions of the low-pass shearlet
features.
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Full Algorithm Integration

Our prototype shearlet+wavelet registration algorithm enjoyed improved
robustness over wavelets alone, but was partially coded in C, and
partially in MATLAB.
The shearlet features component was based on the MATLAB FFST
library, while the wavelet features and optimization components were
written in C.
Moreover, the optimization scheme was designed for a decimated
(non-redundant) wavelet transform, not a redundant frame like shearlets.
We present results from the fully integrated in C wavelets+shearlets
algorithm.
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Summary of Proposed Algorithm (1/2)
1 Input a reference image, Ir , an input image I i and an initial registration

guess (θ0,Tx0 ,Ty0).
2 Apply shearlet features algorithm and wavelet features algorithms to Ir

and I i . This produces a set of shearlet features for both, denoted
Sr

1, ...,S
r
n and Si

1, ...,S
i
n, respectively, as well as a set of wavelet features

for both, denoted W r
1 , ...,W

r
n and W i

1, ...,W
i
n.

3 Apply the wavelet features algorithm to Sr
1,S

i
1 to acquire decompositions

of these coarse shearlet features. These are denoted Sr
1,1, ...,S

r
1,k and

Si
1,1, ...,S

i
1,k , respectively. Here, k denotes the number of scales used in

this wavelet decomposition; for the present experiments, k = 2.
4 Match Sr

1,1 with Si
1,1 with a least squares optimization algorithm and initial

guess (θ0,Tx0 ,Ty0) to get a transformation T S
1,1.

5 Using T S
1,1 as an initial guess, match Sr

1,2 with Si
1,2 with lest squares to

acquire a transformation T S
1,2. Iterate this process by matching Sr

1,j with
Si

1,j using T S
1,j−1 as an initial guess, for j = 2, ..., k . At the end of this

iterative matching, we acquire a decomposed shearlet-based registration,
call it T S

1 = (θS,1,T S,1
x ,T S,1

y ).
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Summary of Proposed Algorithm (2/2)

6 Using T S
1 as an initial guess, match Sr

2 with Si
2 with least squares to

acquire a transformation T S
2 . Using T S

2 as an initial guess, match Sr
3 with

Si
3 with least squares to acquire a transformation T S

3 . Iterate this process
by matching Sr

j with Si
j using T S

j−1 as an initial guess, for j = 2, ...,n. At
the end of this iterative matching, we acquire a full shearlet-based
registration, call it T S = (θS,T S

x ,T S
y ).

7 Using T S as an initial guess, match W r
1 with W i

1 with least squares to
acquire a transformation T W

1 . Using T W
1 as an initial guess, match W r

2
with W i

2 with least squares to acquire a transformation T W
2 . Iterate this

process by matching W r
j with W i

j using T W
j−1 as an initial guess, for

j = 2, ...,n. At the end of this iterative matching, we acquire the final
hybrid registration, call it T H = (θH ,T H

x ,T H
y ).

8 Output T H .
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Outline of Experiments

We consider experiments with the algorithm just described, denoted
shearlet+wavelet with decomposition. This is compared to wavelets-only
and the previously studied shearlets+wavelets algorithm, with improved
optimization for shearlets.
To evaluate the algorithm, different choices of initial guess are compared
with respect to output RMSE. We have seen in previous work that using
shearlets+wavelets allows for a poorer initial guess, while retaining
acceptable RMSE, thus improving algorithm robustness.
While our optimization procedure works for general affine
transformations, we consider the simpler case of searching for
transformations that consist only of translations and rotations.
Moreover, we couple rotation and translations together for the initial
guess, to make the parameter space one-dimensional, and thus easier to
visualize.
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Synthetic Experiments (1/2)

Figure: 512 × 512 lidar shaded relief images of Mossy Rock without (left) and with
(right) synthetic radiometric distortion. The images have been converted to grayscale.
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Synthetic Experiments (2/2)
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Figure: Comparison of algorithms for Mossy Rock synthetically warped experiments
(from left to right: splines, Simoncelli band-pass, Simoncelli low-pass ); blue is
wavelets, yellow is hybrid shearlets+wavelets with decomposition, and red is
shearlets+wavelets without decomposition.
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Lidar-to-Optical Experiments (1/2)

Figure: Lidar DEM (left), and aerial photograph (right) for a scene in WA state. The
shaded relief image, illuminated in the same direction as in the optical image, depicts
similar patterns of textures and edges. All images are 256 × 256. The images have
been converted to grayscale.
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Lidar-to-Optical Experiments (2/2)
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Figure: Comparison of algorithms for WA lidar-to-optical experiments (from left to right:
splines, Simoncelli band-pass, Simoncelli low-pass ); blue is wavelets, yellow is hybrid
shearlets+wavelets with decomposition, and red is shearlets+wavelets without
decomposition.
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Conclusions

The experiments affirm the effectiveness of using shearlets for image
registration.
In concert with wavelets, improved robustness can generally be achieved,
with little cost inaccuracy.
The impact of decomposing the low-pass shearlet features with wavelets
appears, however, unfavorable.
This is perhaps due to the fact that the resultant features will be very
low-pass indeed, thus having insufficient information content for
registration.
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Future Work

It remains of interest to consider the impact of decomposing high-pass
shearlet features, instead of the low-pass features.
Recent theoretical developments with anisotropic Gabor theory suggests
that frames of directional Gabor systems exist.
Early numerical experiments indicate these frames can perform well for
textures, which is a weakness of shearlets.
The use of such systems could improve image registration of highly
textural images.
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